AP CALCULUS BC Unit 5 Outline – Analytical Applications of Differentiation

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
	EXTREME VALUES –	Ex. 1 Find all critical values for each function:	
10/3	ABSOLUTE AND LOCAL EXTREMES	(a) $y = x^3 - 3x + 2$ (b) $y = x^{\frac{2}{3}}$ (c) $y = \sin x$ on $[0, 2\pi]$	
	EATREMES		
		Ex. 2 Determine if the EVT applies. If so, find the extrema of $f(x) = 3x^4 - 12x^3$ on the	
		interval $\begin{bmatrix} -1, 2 \end{bmatrix}$.	
		Ex. 3 Determine if the EVT applies If so find the extrema of $f(x) = \sin x + \cos x$ on the	
		interval $\begin{bmatrix} 0 & 2\pi \end{bmatrix}$	
		$[0, 2\pi]$.	
AP MUL	TIPLE CHOICE		
The fun	ction g is given by $g(x) =$	$4x^{3} + 3x^{2} - 6x + 1$. What is the absolute minimum value of g on the closed	
interval	[-2, 1] ?		
	[_, _] .		
(A) – 7	(B) $-\frac{3}{4}$ (C)) 0 (D) 2 (E) 6	
	7		
Let f be	e the function defined by	$f(x) = \frac{\ln x}{r}$. What is the absolute maximum value of f?	
		X	
(A) 1			
(B) $\frac{1}{2}$	B) $\frac{1}{2}$		
e e	e e		
(C) 0	C) 0		
(D) <i>-e</i>	(D) <i>-e</i>		
(E) $f d$	(E) f does not have an absolute maximum value		
(L) j u	1) j does not have an absolute maximum value.		
Номеwo	DRK	Worksheet 31	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
10/4	MEAN VALUE THEOREM	Ex. 1 Determine if the MVT applies to $f(x) = x^3 - x$ on $[0, 2]$. If so, find the value(s) guaranteed by the theorem.
		Ex. 2 For the following functions, determine if the MVT applies. If so, find the value of c guaranteed by the theorem. If not, specifically state why the theorem does not apply.
		(a) $f(x) = \frac{x+5}{x-1}$ on $[-3,3]$ (b) $g(x) = x^{\frac{2}{3}}$ on $[-3,3]$

AP MULTIPLE CHOICE

Let f be the function given by $f(x) = x^3 + 5x$. For what value of x in the closed interval [1,3] does the instantaneous rate of change of f equal the average rate of change of f on that interval?

(A) $\sqrt{\frac{7}{3}}$ (B) $\sqrt{\frac{13}{3}}$	(C) √5	(D) √6	(E) $\sqrt{\frac{19}{3}}$
--	--------	--------	---------------------------

x	3	4	5	6	7
f(x)	20	17	12	16	20

The function f is continuous and differentiable on the closed interval [3, 7]. The table above gives selected values of f on this interval. Which of the following statements must be true?

- I. The minimum value of f on [3, 7] is 12.
- II. There exists c, for 3 < c < 7, such that f'(c) = 0.
- III. f'(x) > 0 for 5 < x < 7.
- (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- $(E) \ \ I, II, and III$

HOMEWORK

Worksheet 32

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
	INCREASING AND	
10/7	DECREASING BEHAVIOR	Ex. 1 For $f(x) = -x^3x^3x^3 + 9$
	FIRST DERIVATIVE TEST	(a) Find the open intervals on which $f(x)$ is increasing and/or decreasing. Justify.
		(b) Determine the x-values of any local maxima or local minima of $f(x)$. Justify.
		Ex. 2 Find the exact values of any relative extrema of the function $f(x) = \frac{1}{2}x - \sin x$ on the
		$\frac{2}{100000000000000000000000000000000000$
AP MULT	IPLE CHOICE	
The funct	tion f given by $f(x) = 9x^{2/3}$	$x^3 + 3x - 6$ has a relative minimum at $x =$
(A) - 8	(B) $-\frac{3}{2}$ (C)	-1 (D) $-\frac{1}{2}$ (E) 0
$(\mathbf{A}) = 0$	$(\mathbf{D}) = \mathbf{V} \mathbf{Z} \qquad (\mathbf{C})$	-1 (D) $-\frac{1}{8}$ (E) 0
The func	tion f has a first derivative	given by $f'(x) = x(x-3)^2(x+1)$. At what values of x does f have
a relative	e maximum?	
(A) = 1	only (B) 0 only	(C) -1 and 0 only (D) -1 and 3 only (E) -1 0 and 3
(A) = 1	only (b) o only	(C) -1 and 0 only (D) -1 and 5 only (E) -1 , 0, and 5
P		
The first o	derivative of the function f is	given by $f'(x) = \sin(x^2)$. At which of the following values of x does
f have a	local minimum?	
	(D) 0.171 (C)	
(A) 2.507	(B) 2.171 (C)	1.772 (D) 1.253 (E) 0
HOMEWO	DRK	Worksheet 33

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
10/8	CONCAVITY POINTS OF INFLECTION	Notes Handout
AP MULT	IPLE CHOICE	
For what values of x does the graph of $y = 3x^5 + 10x^4$ have a point of inflection? (A) $x = -\frac{8}{3}$ only (B) $x = -2$ only (C) $x = 0$ only (D) $x = 0$ and $x = -\frac{8}{3}$ (E) $x = 0$ and $x = -2$		
HOMEWO	PRK	Worksheet 34

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
	SECOND DERIVATIVE	
10/9	TEST FOR EXTREMA	Notes – Handout
		Quiz – Extreme Values, Inc/Dec, First Derivative Test
Homework		Worksheet 34 (cont.)

18 meters of

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
	OPTIMIZATION	Extreme Values
		Increasing/Decreasing Behavior
10/14	AND	Max/Min
		Concavity
	REVIEW	Points of Inflection
		Graphs of f'
		Optimization
HOMEWORK		Worksheet 37

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
10/15	UNIT 5 - FRQ	FREE RESPONSE QUESTIONS
HOMEWORK		Worksheet 38

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
	UNIT 5 EXAM	Extreme Values; Increasing/Decreasing Behavior
10/17		Max/Min; Concavity
		Points of Inflection; Graphs of f'
		Optimization
HOMEWORK		None